
dP

NASA Contractor Report

ICASE Report No. 90-63

182104

ICASE
INFLATED SPEEDUPS IN PARALLEL SIMULATIONS
via mailoc()

David M. Nicol

Contract No. NAS1-18605

September 1990

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, V£rginia 23665-5225

Operated by the Universities Space Research Association

[U/ A
N_iionnl A_.ronm tiles _lnrJ
Snm:n Admirli_lmlion

I_,flngley r_e_e#reh Cenier

Hampton, Virginia 23665-5225

(N A_-

PAkA

Reic.o

A-C_-IoPlOe) I_iFLATED SPEEOUP$ iN

LL_L £1MULATI'_S Via MALLOC() i:in_l

rt (ICA3F)]8 p CSCL

r, 3/_,1

'WQI-i I 3./

Inflated Speedups in Parallel

via malloc ()

Simulations

David M. Nicol*

College of William and Mary

Abstract

Discrete-event simulation programs make heavy use of dynamic memory allocation

in order to support simulation's very dynamic space requirements. When programming

in C one is likely to use the mallo¢() routine. However, a parallel simulation which

uses the standard Unix System V malloc() implementation may achieve an overly op-

timistic speedup, possibly superlinear. An alternate implementation provided on some

(but not all) systems can avoid the speedup anomaly, but at the price of significantly

reduced available free space. This is especially severe on most parallel architectures,

which tend not to support virtual memory. This paper illustrates the problem, then

shows how a simply implemented user-constructed interface to malloc() can both

avoid artificially inflated speedups, and make efficient use of the dynamic memory

space. The interface simply caches blocks on the basis of their size. We demonstrate

the problem empirically, and show the effectiveness of our solution both empirically

and analytically.

*This research was supported in part by NASA grant NAG-l-1060, in part by NASA grant NAS-1-18605,

and in part by NSF Grant ASC 8819373.

i

1 Introduction

Dynamic memory allocation plays an important role in the implementation of discrete-event

simulations. For example, in a queueing network simulation blocks of memory are dynami-

cally allocated and freed as the event list changes, and as jobs enter and exit the network.

When programming in C one invariably calls malloc() to request a block of dynamic mem-

ory, and calls free() to release it. A programmer may not give great deal of thought to

malloc()'s underlying implementation. Commonly used implementations search a linked-

list of freed blocks for a match. As the length of the list grows, the cost of calling malloc()

grows. As we will show, this may lead to falsely optimistic speedup measurements of a

parallelized simulation (or any other program which makes heavy use of dynamic memory).

Other implementations have a cost that is nearly independent of the number of available

freed blocks. However, scalable implementations allocate blocks that are significantly larger

than the requested block size. Over-allocation poses little problem in a virtual memory

system where the effective size of the memory can be measured in gigabytes--but most par-

allel architectures do not support virtual memory. An implementation that over-allocates

physical memory space reduces the size of the simulation model one can run.

This paper illustrates the problem, and offers a simple solution. The solution exploits

the fact that there are often only a few different sizes of blocks requested from malloc(). A

user may easily write an interface to malloc() and free() that caches freed blocks on the

basis of their size. A request to the interface for a block of size n searches the cache for a list

of freed blocks of size n. The space-efficient version of malloc() is called if the cache fails to

satisfy the request. The interface to free() rarely calls it. Instead, it places places the freed

block into the cache. We show empirically and analytically that this solution "scales'--the

cost of requesting a block of memory is nearly independent of the number of freed blocks.

We also show that the solution permits the simulation of larger models than is possible using

the standard scalable (but space-inefficient) malloc().

This paper is organized as follows. §2 explains how standard implementations of real 1 oc ()

either cause false speedups, or allocate space inefficiently. §3 describes our solution. §4

presents empirical data that demonstrates the problem, and illustrates the effectiveness of

our solution. §5 analytically shows that the proposed space management algorithm scales

with problem size. §6 summarizes this paper.

2 The Problem

The standard Unix System V implementation of malloc () [10] maintains a linked list of all

freed blocks, ordered linearly by memory address. Each block records its size and location.

Because of the ordering, free() can quickly determine whether a newly freed block can be

merged with a physically adjacent block. A request to malloc() is satisfied by scanning

the free list until a block of sufficient size is found. This block is split in two; one subblock

is returned to satisfy the mallo¢() request, while the other remains in the free list. The

average time required to complete a malloc() call depends on the average length of the

list. Larger simulation models will tend to demand more dynamic memory and fragment the

dynamic memory space more, thereby causing more costly malloc () calls.

Let us now characterize the %ize" S of a simulation model in terms of the average number

of dynamic memory blocks that have been allocated and not yet freed at any given instant.

If the simulation has for some time constantly requested and freed blocks randomly, then

the number of blocks in the freed list will be proportional to S, and the average cost of a

malloc() call will be proportional to g(S), where g is some increasing function. Let us also

characterize the simulation woi'kload in terms of N, the total number of malloc () calls it

makes. If N is very large compared to the number of calls that scrambled the freed list,

the simulation's execution.time will be proportional to Ng(S). Now suppose that the same

simulation has been distributed among P processors. If the workload is evenly balanced each

processor receives 1/P-th of the simulation model, and 1/P-th of the simulation activity.

This means that the size of the simulation at one processor is S/P, so that the cost of a

malloc() call is proportional to g(S/P). Furthermore, the number of malloc() calls it

performs is NIP. If all P processors execute in parallel, the time required to perform the

N malloc() calls is proportional to (N/P)g(S/P) a speedup of order Pg(S)/g(S/P) over

the serial implementation. Since 9(S) > 9(S/P) the speedup is superlinear.

It is important to get an accurate measurement of speedup, because only then can we

assess the benefit of parallelism to the end user. One may assume that in a serial context

the user will execute an optimized implementation; when possible, speedups should be mea-

sured against an optimized serial solution. This is not always practical, and so speedups

are sometimes measured against one-processor implementations of the parallel algorithm.

The research community seems to accept this practice, provided that the complexity of the

one-processor solution is the same as the optimized serial solution. In this way the serial

solution is asymptotically optimal to within a constant factor. For example, a massively par-

allel sorting algorithm may require o(n _) comparisons, but use o(n 2) processors to achieve a

fast solution. Computation of speedup based on an o(n 2) serial sorting algorithm is frowned

upon. The speedupswe study are computedfrom one-processorimplementationsof a par-
allel approach. Based on experimentation with queueingnetworks, we estimate that the
serial timings we obtain are no more than twice as large as thoseof highly tuned optimal
implementations, at least on queueingnetworks.

Useof a non-optimal (in terms of complexity) serial implementation is often the under-
lying causeof overly optimistic measurementsof speedup1. For example, practitioners of
parallel simulation have observedsuperlinearspeedupin early developmentphasesof their

algorithms, due to the use of quickly implementedlinearly-ordered event lists. Most (but
not all--see [3]) realize that performancemeasurementstaken under these conditions are
meaningless:any log-time priority list schemewill accelerateboth the serial and parallel
implementations,and not exhibit superlinearspeedups.Careful researchersof parallel simu-
lation ensurethat their event list algorithms and synchronizationmechanismsscaleproperly
asthe number of processorschanges.

Observationof superlinearspeedupis a clear indication of a problem. More insidious is
the casewherea non-optimal serial implementation causesspeedupto be inflated, but not
superlinear. Onemay be tempted to acceptgoodspeedupsat facevalue,without questioning
possibleinflation. We identify a simple metric, total workload, which reveals the presence

of inflated speedups. Total workload is simply the sum of the execution time of all "useful"

simulation work, in all processors. Inflated speedups of the type induced by malloc() are

recognized when total workload decreases radically as the number of processors is increased.

In theory one can always defeat inflated speedups by constructing a serial algorithm

which emulates the parallel. That option is not so easily chosen for our problem, as delving

into the system-level details of dynamic space management is not an activity for the faint-

of-heart. One solution exists in the form of a different implementation of malloc(), which

is standard under Berkeley Unix systems and is usually offered as an option 2 under System

V. The size of each block is of the form 2J - 4 bytes. This form results from a partitioning

of the dynamic memory in blocks of powers of two; malloc() reserves four bytes in each

block for its own use. A list of free blocks is maintained for each possible size. The size

of a requested block is rounded up to the nearest available size, and a free block from that

list is returned. Should that list be empty, a larger block is returned. The proper block

list is found after a few shifts, and constant-time unlinking operations to release the block.

However, if the requested block sizes are uniformly random, the size of an average request

will fall half-way between two block sizes. On average, a third of the allocated space will

1See [2] for an interesting classification of causes of superlinear speedup.
_This is not always the case. At the time of this writing the operating system delivered with the Intel

iPSC/860 does not include this option.

3

be wasted. Node processorson most parallel architecturesdo not support virtual memory.
The over-allocationcomesfrom physicalmemory,thereby reducingthe sizeof the simulation
model that can be evaluated on the machine. However,the cost of calling this version of
malloc () is nearly independentof the number of outstanding memory blocks. We will refer
to this versionasthe scalable malloc().

The problem then is to find a way of managing dynamic space that avoids inflated

speedups, and which makes efficient use of space. As is so often the case in computer

science, the answer lies in caching.

3 Caching Freed Blocks

Any caching scheme relies on some locality property, usually related to memory addresses

and the temporal pattern of accesses to them. The locality we exploit is that of size--the size

of a requested block tends to be one of only a few sizes requested throughout the simulation.

Any given simulation will have a number of object types for which it creates and destroys

instances; in our experience the number of different types (and hence object sizes) often is

not large. We may therefore emulate scalable maIloc() and maintain (at the application

level) a list of freed blocks for each frequently used block size. We will suppose there is a

maximum number L of lists we will maintain in the cache. A similar scheme was proposed

some years ago for the caching of procedure frames in the Mesa system [5].

A request for a block of size n is handled by first searching to see if a list for size n blocks

is present in the cache. If it is, and if there is a free block of size n the block is delinked

and returned. If the cache contains an empty list for size n we call malloc() to supply a

block. Failure to find a size n list results in the creation of one. In our own applications it

is very rare to require more than ten different sized blocks. The code we present and the

implementations we test all set an upper bound on the number of lists. The interface can be

modified to support applications whose size requirements change dynamically: if the number

of existing lists equals L at the time a new list is required, we can replace an existing list.

An LRU (Least-Recently-Used) policy may govern replacement. The list "touched" most

distantly in the past is selected, and all of its blocks may be returned via free().

Figure 1 gives the source code for our implementation of ssmalloc() and ssfree ()--the

scalable space-efficient dynamic memory routines. These routines use the first word in the

block either as a link (when in the free list), or to store the block size (when allocated). The

versions shown are terse; our actual implementations include error and sanity checks. Other

implementations may be more efficient when the number of lists is larger, for example, one

might hash on the size of the requested block.

#define MAXPTRS I0

struct BufferPtrStruct { int length; char **ptr;

} BufferPtr[MAXPTRS];

char *ssmalloc(size)

int size;

{

char **ptr,*ans; int i=O;

while(BufferPtr[i].length &a size != BufferPtr[i].length) i++;

BufferPtr[i].length = size; /* in case this is new */

if(BufferPtr[i].ptr) /* List non-empty7 */

{ ptr = BufferPtr[i].ptr; /* get block request */

BufferPtr[i].ptr = (char **)*ptr; /* delink free block */ ;

}

else ptr = (char **)malloc(size + sizeof(char **));

*ptr++ = (char *)BufferPtr[i].length; /* record size */

return((char *)ptr);

void ssfree(ptr)

char **ptr;

{

int size,i=O;

ptr--; size = *(int *)ptr; /* back up to size field */

while(BufferPtr[i].length &_ size != BufferPtr[i].length) i++;

*ptr = (char *)BufferPtr[i].ptr;

BufferPtr[i].ptr = ptr;

Figure 1: Space-Efticient Scalable Dynamic Memory Routines

5

4 Empirical Studies

We now present empirical evidence that inflated speedups due to malloc () can occur. First

we demonstrate that in theory speedups can be inflated by as much as an order of magnitude.

This extreme case is achieved when dynamic memory management routines completely dom-

inate the computation. V_Tethen examine the problem in the context of a working parallel

simulation system, YAWNS (Yet Another Windowing Network: Simulator) [6, 7]. YAWNS

provides a common platform for the parallel simulation of many different types of networks.

The demands on dynamic memory come primary from the handling of small "logical mes-

sages" passed between network elements, from dynamic event creation/deletion, and from

internal bookkeeping activities. The user defines the messages and the message sizes. In the

simulation models we have developed the number of different block sizes is less than ten. We

examine the performance of YAWNS on two different simulation problems. Both illustrate

the phenomenon of inflated speedups due to malloc (), one exhibits superlinear speedup.

We are interested in three performance characteristics: raw finishing time, behavior of

the speedup curve, and maximal simulatable problem size. We will look at these character-

istics as measured using standard System V malloc(), using scalable malloc(), and using

ssmalloc().

4.1 Superlinear malloc ()

The potential for superlinear speedups is demonstrated by measuring the average cost of

calling malloc() (or free()) as a function of the "size" of the problem. Our experiments

show that on large problems, the average cost of calling malloc() is over 10 times greater

than the average cost on small problems. Therefore, if the problem can be split among enough

processors so that each has a "small" problem, speedups that are an order of magnitude larger

than linear might be observed.

We measured the average cost of malloc() and ssmalloc() on one node of the Intel

iPSC/2 [1] in the following way. To create a problem of size S we construct an array of S

pointers, which will point to blocks of dynamic memory. Each array position is assigned a

block of a given size. The possible sizes (in bytes) are 8, 16, 32, 64, 128, and 256. Assignment

of sizes to array positions is cyclic: slots 0, 6, 12,- • • get size 8, slots 1,7, 13,.. • get size 16,

and so on. At initialization, an array position is either filled with a pointer to a block of

the appropriate size, or is left empty. The choice is made randomly, with equal likelihood

for either possibility. Next we iterate, making many passes over the array. On each pass, at

each array position, we randomly decide with equal likelihood whether or not to change the

status of the array position. If a decision to change the status is made, a non-empty array

i

F

6

pointer is changedby freeing the indicated block; the status of an empty array pointer is
changedby allocating a new block, a pointer to which is stored in the array location.

S models the size of a simulation problem. On average there will be S/2 blocks allo-

cated in the array, implying that the average number of freed blocks in malloc()'s list is

proportional to S/2. As S grows we expect the cost of calling malloc() to grow.

We can measure the time required to iterate a given number of times over the array,

then count the number of calls made to space allocation routines, and compute the average

total time per call. However, this measurement includes overhead due to looping, testing ,

random number generation, and the like. The overhead can be accounted for by performing

an identical run that does everything except call the space allocation routines. The actual

average cost of calling a space allocation routine is computed by taking the difference in

timings for the two runs, and dividing by the number of routine calls.

Figure 2 plots the average cost of calling malloc() or free(), and the average cost of

calling ssmalloc() or ssfree(), as a function of the logarithm (base two) of the array size,

S. The cost of the scalable space-emcient routines is seen to be very nearly constant--it

rises slightly from 19 it-see to 21 #-see as S goes from 22 to 216. The cost of malloc() and

free() remains relatively constant at 16 #-see for S between 22 and 26. However, for S

larger than 26 the cost rises, reaching 186 it-see at S = 216. This is over 10 times slower

than its average cost at S = 22. Therefore, in the most extreme case it would be possible

to achieve speedup which is a factor of 10 larger than linear. This is unlikely to happen,

because other scalable costs are involved in the computation and will serve to mute the

effect of a non-scaling malloc(). But, as we will see, real applications can suffer inflated

and sometimes superlinear speedups due to malloc().

4.2 Inflated Speedups in YAWNS

Next we show how malloc() can inflate speedup measurements of a real application, the

YAWNS parallel simulation system. We will look at the performance characteristics of

YAWNS on two different simulation problems. The first simulates the movement of objects

through an abstract hypercube structure. An object resides at a hypercube node for a ran-

dom period of time, then randomly selects some node connected to its current one and moves

there. Nodes do not impose queueing, so any number of objects may reside concurrently at

a node. This simulation is interesting because it exhibits superlinear speedup. The second

simulation is of Conway's Game of Life. Speedups for this problem become inflated, but are

not (usually) superlinear. This problem also reveals how scalable malloc() limits the size

of problem one can simulate.

The object movement simulation was written as a simple driver to test YAWNS during

200
Average cost of malloc0/free 0 call

180

160

140

u) 120"O
C:
O 100
o
o

80

60

4O

2O

malloc)
: ssmalloc

' I ' I ' I ' I ' I ' I ' i 7 I ' I ° [' I ' I ' I ' "

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

,og2(s)

Figure 2: Average cost of space allocation routines, as function of problem size

implementation and debugging. Our discovery of superlinear speedup on this problem led

to the inquiry and solution reported in this paper. Our suspicions fell upon malloc() only

after we had eliminated every other possibility.

We will use one specific problem instance to illustrate superlinear speedup, although this

simulation model routinely achieves it under a wide variety of circumstances. The problem

instance moves 4096 objects between nodes in an 8 dimensional hypercube structure (256

nodes). Each object resides at the node for a random period of time, composed of the

constant 0.25 plus an exponential random variable with mean 1. It chooses a new destination

with equal likelihood among all the nodes connected to its current one. The simulation

terminates when the simulation time reaches 100. This requires the processing of a few

hundred thousand events.

Table 1 presents data taken from a representative problem run. The simulation is written

in such a way that given an initial random number seed, exactly the same events occur, in-

dependently of the number of processors used. We present data from use of both malloc()

and ssmalloc(). The processor utilization figures come from independent on-processor

measurement of the total time spent performing overhead activity--interprocessor commu-

8

nication, synchronization delays due to blocking, synchronization activity required by the

synchronization protocol, etc. The utilization figure thus represents the average fraction

of time a processor spends performing "useful" simulation work. This workload should be

independent of the number of processors used. In theory, one can always estimate the total

time spent executing useful workload by multiplying together the average utilization, the

finishing time, and the number of processors. We call this the Total Workload. Our tables

provide this calculation.

In practice, the true average processor utilization may be difficult to obtain, because

lack of good hardware timing mechanisms make it difficult to measure small bursts of over-

head activity. An additional problem is faced by programs using optimistic synchronization

mechanisms such as Time-Warp [4], because the processing of an event can be overhead,

if the event is later rolled back. A method for measuring utilization in a Time Warp Sys-

tem is given in [8] (although they call this the effective utilization, allowing the definition

of "utilization" to include overhead). The method is based on measuring the time delay

associated with processing each event. If the events have small executions times" relative to

the timer resolution, considerable error may creep into the utilization estimate. A side-effect

of YAWNS global style of synchronization is that the overhead occurs in bursts isolated from

the processing of useful work. While clock granularity can still be an issue, it is less of a

problem than it would be under more asynchronous synchronization protocols.

The data clearly shows superlinear speedup under ialloc (), and shows why the speedup

is inflated. The total workload on one processor is 65% larger than the total workload on

16--the serial version appears to be doing more work. The extra work can be attributed to

the larger cost of calling rnalloc() and free() on larger problems. Caching compares well

with malloc(). Not only is the total workload relatively constant (less than 5% deviation

between the 1 and 16 processor total workloads) so that the speedups behave properly, the

raw finishing times are better as well. One shouldn't expect the total workload measurement

to be exactly constant, as a fair amount of noise creeps into the timing process--the resolution

of the clock available to a program on the Intel iPSC/2 is coarse, at one millisecond.

Checking the relative constancy of total workload is a useful way of detecting whether

an application has inflated speedups. Speedup inflation may go unnoticed if the speedups

are sublinear. However, if speedups are inflated, measurement of the total workload (when

possible) will reveal it. This is the case with the second YAWNS application we consider,

Conway's Game of Life.

The Game of Life consists of a toroidal mesh of cells, each of which is either dead or

alive. Time progresses in unit steps. The state of a cell at time n is determined by a simple

rule. If the cell was alive at time n - 1, then it remains alive at n if and only exactly three

9

J

Processors secs utilization Speedup Total Workload

1 851 99% 1.00 842

2 414 88% 2.05 728

4 171 86% 4.97 588

8 83 81% 10.2 537

16 45 71% 18.9 511

Performance data using malloc ()

Processors sees utilization Speedup Total Workload

I 493 99% 1.00 488

2 250 96% 1.97 480

4 132 89% 3.73 470

8 71 82% 6.94 466

16 41 71% 12.02 466

Performance data using ssmalloc ()

Table 1: Performance measurements for moving object simulation

of its immediate neighbors (at all 8 points of the compass) were alive at time n - 1. The

rationale is that if fewer than three neighbors are alive the cell dies of loneliness, while if

more than three neighbors are alive it dies of overcrowding. Similarly, a cell which was dead

at time n - 1 springs to life spontaneously at time n if it has exactly three live neighbors at

time n - 1.

One usually thinks of the Game of Life in the context of cellular automata, but discrete-

event simulation provides an efficient mechanism for performing the computation. The events

are re-evaluation of a cell's state. Whenever a cell changes stale it sends a message to each

of its 8 neighbors informing them of the change. A cell which receives a change of state

message must re-evaluate its own state, as its environment has changed.

The Game of Life consumes a great deal of dynamic memory on large boards, owing to

the high number of messages that a cell sends when its state changes. It is therefore a good

problem for illustrating the short-comings of scalable malloc(). We measured the largest

board size that could be simulated for 25 time-steps without exhausting memory, given a

!

10

random initial assignmentof cell states where eachcell is alive with probability 0.2. Of
course,the largest board sizepossibledependson the initial assignment,but one run on 16
processorsis fairly representativeof the others. On the representativerun, the malloc()
implementation wasable to simulate a 357x 256 cell board. Under ssmalloc() it handled
board sizesup through 315x 256 cells,while underscalablemalloc() it failed after a board
of size147x 256.

Standardmalloc () permits the simulation of a boardwhich is 13%larger than the largest
one permitted under ssmalloc(). This is explainedalmostexactly by the fact that intercell
messagesare 7 words long. The spacefor thesemessagesalways comesoriginally from
malloc(), but ssmalloc() asks it for 8 words--the extra one is used by ssmallo¢() and

ssfree () for linking, and for storing of the message size. Thus, on this problem ssmalloc ()

suffers a 12.5% space overhead. It is possible to eliminate this overhead, for a price, malloc()

writes its own secret information in the first word before the one returned. We could overwrite

that word for own purposes, but then could never return the block to free() as we need to

if ssmalloc() were modified to support more than L different list sizes.

The failings of scalable malloc () are clear-over a 50% reduction in the size of the maxi-

mum sinmlatable problem. That the degradation is so much greater than the 33% "average"

one infers from a quick average case analysis is largely due to the primary message size. Scal-

able malloc() uses a block of 15 words to satisfy ssmalloc()'s request for 8 words. Also,

the quick average case analysis does not account for the fact that a failure to find the smallest

block which contains a request causes the selection of blocks that are 4 or more times larger

than the size of the request.

Table 2 presents performance measurements obtained using malloc (), scalable malloc ()

and ssmalloc() on a 64 cell board, simulated for 50 steps, where the initial probability of a

cell being alive is 0.2. 64 x 64 is the largest power-of-two sized board that a single processor is

capable of handling using malloc (), or s small oc (). Scalable real 1 oc () requires the memory

of four processors to simulate a board of that size, for that long. Lacking a serial timing,

we omit speedup calculations for scalable malloc(). However, it is clear that ssmalloc()

is approximately 20% faster than scalable malloc(), as well as being more space efficient.

5 Analysis

A simple analytic model supports the observed near-constant cost of ssmalloc (). We model

the behavior of a single list of commonly sized blocks as a probabilist_c birth-death process,

and show that the average number of transitions between expensive calls to malloc () grows

exponentially fast. Even if the cost of calling aalloc() is linear in the number of outstanding

11

Processors secs utilization Speedup Total Workload
1 197 99% 1.00 195
2 91 85% 2.16 155
4 50 68% 3.91 137
8 29 61% 6.87 139
16 17 51% 11.7 137

Performancedata usingmalloc ()

Processors sees utilization Total Workload

4 36 79% 133

8 20 72% 116

16 12 63% 120

Performance data using scalable malloc ()

Processors sees utilization Speedup TotaI Workload

1 97 99% 120 96

2 50 90% 1.95 99

4 28 78% 3.45 88

8 16 68% 5.93 89

16 10 58% 9.63 93

Performance data using ssmalloc()

Table 2: Performance measurements for Game of Life simulation

z

memory blocks, there are exponentially many "cheap" ssmalloc () calls between the linearly

expensive ones. The expensive calls are therefore amortized over so many cheap calls that

the average cost of calling ssmalloc() is nearly constant.

Let T1,..., TL be the set of lists, holding blocks of size sl,..., SL respectively. Consider

the sequence of ssmalloc() and ssfree() calls to all lists on one processor. We will call

this the complete sequence. We can always filter the complete sequence and consider only

those calls for blocks of size sj. We suppose that this stream forms a simple Markovian

birth-death process whose state is the number of dynamic blocks allocated by ssmalloc(),

12 ._

but not yet released. From a non-zero state, with probability pj < 0.5 a call in the filtered

stream for Tj will be to ssmalloc(), with probability qj = 1 - pj it will be to ssfree(). If

all requested blocks have been returned, then the state is zero and the next call must be for

ssmalloc ().

A non-constant costof callingssmallo¢() occurs whenever the appropriate listisempty.

This event coincides with the Markov chain achieving a record,or new maximal state.The

ith record Ri,jfor listTj isdefined simply to be the number of chain transitionsthat occur

before state i is reached for the first time. We are interested in E[Ri,j] --E[Ri-I.j], for

i = 2,3... ,., as these differences indicate how often, on average, ssmalloc 0 must call

malloc().

Let Sn,j denote the total number of blocks associated with Tj, either explicitly in the list

or still allocated at the nth complete ssmalloc() or ssfree() call. S_,j is just the index

of the last record defined for this list, e.g. S,_.j = k if k is the largest record Rk,j such that

Rk,j < k. We assume that the average cost of calling malloc() at the nth complete call

is an increasing sublinear function g of the total number of allocated but unfreed blocks at

the nth complete call: O(E[g(_2L=l(Snd)]). The point we will establish is that this non-

constant cost increases by only O(1) every time malloc() is called, or equivalently, every

time some list achieves a new record. We will show that for each Tj, the expected number

of calls between records (E[Ri,i - Ri-l,j]) grows exponentially in i. This implies that the

number of references between calls to malloc() grows exponentially as i increases, so that

each "expensive" ssmalloc() call is amortized over exponentially many constant-cost calls.

We now derive an expression for E[Ri,j - Ri-l,j], for any list Tj. The only way to reach

state i the first time is through state i - 1. It requires Ri-l,j transitions to reach i - 1 for the

first time. Then, a Bernoulli trial with probability pj determines whether state i is achieved

in the next transition. In fact, the number of times after the first that the chain touches

state i - 1 before stepping up to state i is a geometric random variable G minus 1, where

E[G] = 1/pj. Each time the chain fails to step up from i - 1 to i it wanders off in the lower

indexed region of the state-space before returning. The number of transitions involved in

each wandering away is a random variable with mean #i-1. Each wandering is independent

and identically distributed as any other, and G - 1 is a "stopping time" for the sequence of

wanderings. If the number of transitions in the kth wandering is denoted by Wk, then

G-1

Ri,j = Ri-l,j + ___ Wk + 1.
k=l

Applying Wald's lemma[9] to the random sum and rearranging we find that

E[Ri,j]_ E[Ri_I,j]= (-_j - l) #i_, + l. (1)

13

We will derive_i-1 from the fact that the meantime betweenvisits to a state k in an ergodic

Markov chain is equal to the reciprocal of the limiting occupancy probability of state k : 1/zrk

[9].

The subchain in which the wandering occurs is simply a birth-death process with reflect-

ing states at 0 and i - 1. The occupancy probability of state i - 1 is derived using standard

techniques. First, the local balance equations are set up:

7r o = qj_r i

Pj_'k = qj_'k+l for k = 1,..., i - 3 ,

pjTl'i-2 ----- 7ri-1

2

from which it follows that
i-2

71"i_ 1 = 71"0,

or equivalently,
|

1 kp, /
tti_x --

7r i-1 7r 0 =

As i increases, the limiting probability fro decreases. Furthermore, since (qj/pj) > 1, it

follows that #i-1 increases exponentially fast in i. Applying this observation to equation (1)

we see that the expected number of transitions between rec0rds.grows exponentially in i.

The cost of calling malloc() grows at most linearly in the total number of records

achieved by all the lists. However, for each list the expected number of transitions between

records is growing =exponentially in the number Of records. Consequently, on average the

sublinear cost of malloc() is amortized over sufficiently many constant-cost calls that the

asymptotic average cost of calling ssmallo¢() is nearly constant.

6 Summary

Dynamic space management is an important component of many discrete-event simulations.

When programming in C, one is likely to use malloc () to acquire blocks of free space, tIow-

ever, commonly used versions of malloc() either induce inflated speedups, or overallocate

memory byas much as 50%1 This paper gives emplrical evidence of the problem, and then

proposes that dynamic memory blocks be cached on the basis of their size. We demonstrate

empirically and analytically that the proposed solution is effective.

14

Acknowledgments

Scott Rifle is commended for his efforts in programming the malloc() measurement code.

We thank Phil Kearns for showing us the source code for scalable malloc ().

References

[1]

[2]

[3]

[4]

[5]

L. Bomans and D. Roose. Benchmarking the iPSC/2 hypercube multiprocessor. Con-

currency: Practice and Experience, 1(1):3-18, Sept. 1989.

D.P. Helmbold and C.E. McDowell. Modeling speedup (n) greater than n. IEEE Trans.

on Parallel and Distributed Systems, 1(2):250-256, 1990.

N.J. Davis IV, D.L Mannix, W. Shaw, and T Hartrum. Distributed discrete-event sim-

ulation using null message algorithms on hypercube architectures. Journal of Parallel

and Distributed Computing, 8(4):349-357, April 1990.

D. R. Jefferson. Virtual time. ACM Trans. on Programming Languages and Systems,

7(3):404-425, 1985.

B.W. Lampson. Fast procedure calls. In Proceedings of the ACM Symposium on Ar-

chitectural Support for Programming Languages and Operating Systems, pages 66-76,

1982.

[6]

[7]

[8]

D. Nicol, C. Micheal, and P. Inouye. Efficient aggregaton of multiple LP's in distributed

memory parallel simulations. In Proceedings of the 1989 Winter Simulation Conference,

pages 680-685, Washington, D.C., December 1989.

D.M. Nicoh The cost of conservative synchronization in parallel discrete-event simula-

tions. Technical Report 90-20, ICASE, 1990. Available from ICASE, Mail Stop 132C,

NASA Langley Research Center, Hampton, VA 23665.

P.L. Reiher and D. Jefferson. Virtual time based dynamic load management in the time

warp operating system. In Distributed Simulation 1990, volume 22, pages 103-111. SCS

Simulation Series, 1990.

[9] H.S. Ross. Stochastic Processes. Wiley, New York, 1983.

[10] AT & T. Unix System V/386, Release 3.2. Prentice-Hall, Englewood Cliffs,N J, 1989.

15

D

Report Documentation Page
Narona¢ _'Onau fc s and
_r¢_ce _mJn_srr3t_l

1. ReportNo.
NASA CR-182104

ICASE Report No. 90-63

2. Government Accession No.

4. Title and Subtitle

INFLATED SPEEDUPS IN PARALLEL SIMULATIONS

VIA MALLOC ()

7. Author(s)

David M. Nicol

9. Performing OrganizationName and Address
Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

t2. Sponsoring AgencyName and Add_ss
National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

3, Recipient'sCatalog No.

5. Report Date

September 1990

6. Performing OrganizationCode

8. PerformingOrganization Report No,

90-63

10. Work Unit No.

505-90-21-01

11. Contract or Grant No.

NASI-18605

13. Ty_ ofRepo_andPeriodCovered

Contractor Report

14. Sponsoring ,_,gencyCode

15. Supplementa_ Notes
Langley Technical Monitor:

Richard W. Barnwell

Submitted to International Journal

of Simulation

Final Report

16. Abstract

Discrete-event simulation programs make heavy use of dynamic memory allocation

in order to support simulation's very dynamic space requirements. When programming

in C one is likely to use the malloc() routine. However, a parallel simulation

which uses the standard Unix System V malloc() implementation may achieve an overly

optimistic speedup, possibly superlinear. An alternate implementation provided on

some (but not all) systems can avoid the speedup anomaly, but at the price of sig-

nificantly reduced available free space. This is especially severe on most para-

llel architectures, which tend not to support virtual memory. This paper illus-

trates the problem, then shows how a simply implemented user-constructed interface

to malloc() can both avoid artificially inflated speedups, and make efficient use of

the dynamic memory space. The interface simply caches blocks on the basis of their

size. We demonstrate the problem empirically, and show the effectiveness of our

solution both empirically and analytically.

17. Key Words (Suggestedby Authoris))

parallel simulation, superlinear speedup,

dynamic space allocation

"-19.Security Classif. (of this report)

Unclassified

18. D_tribution Statement

61 - Computer Programming and Software

Unclassified - Unlimited

21. No. of pages

17

20. SecuriW Cla_if. (of thispage)

Unclassified

22. Price

A0 3

NASA FORM 1625 OCT86
NASA-Langk'y, 1990

